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A B S T R A C T

Alzheimer’s disease (AD) is the most common neurodegenerative disorder in the elderly. Early diagnosis
of AD plays a vital role in slowing down the progress of AD because there is no effective drug to treat
the disease. Some deep learning models have recently been presented for AD diagnosis and have more
satisfactory performance than classic machine learning methods. Nevertheless, most of the existing computer-
aided diagnostic models used neuroimaging features for diagnosis, ignoring patients’ clinical and biological
information. This makes the AD diagnosis inaccurate. In this study, we propose a novel multimodal feature
transformation and fusion model for AD diagnosis. The feature transformation aims to avoid the difference in
feature dimensions between different modal data and further mine the significant features for AD diagnosis. A
geometric algebra-based feature extension method is proposed to obtain different levels of high-dimensional
features from patients’ clinical and personal biological data. Then, an influence degree-based feature filtration
algorithm is proposed to filtrate those features that have no apparent guiding significance for AD diagnosis.
Finally, an ANN (Artificial Neural Network)-based framework is designed to fuse transformed features with
neuroimaging features extracted by CNN (Convolutional Neural Network) for AD diagnosis. The more in-
depth feature mining of patients’ clinical information and biological information can significantly improve
the performance of computer-aided AD diagnosis. The experiments are obtained on the ADNI dataset. Our
proposed model can converge faster and achieves 96.2% accuracy in AD diagnostic task and 87.4% accuracy
in MCI (Mild Cognitive Impairment) diagnostic task. Compared with other methods, our proposed approach
has an excellent performance in AD diagnosis and surpasses SOTA (state-of-the-art) methods. Therefore, our
model can provide more reasonable suggestions for clinicians to diagnose and treat disease.
1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder that often
appears in the aged. AD has unique characteristics in etiology and
pathology. Its clinical manifestations are the decline of daily life and
cognitive ability, accompanied by mental symptoms and behavioral
disorders [1]. Researchers around the world have been exploring the
causes of the disease [2,3]. Still, there is no clear etiology recognized
by all researchers, and there is no treatment method that can prevent
or reverse it. Therefore, early detection and early diagnosis are crucial
for slowing down the development of the disease and reducing the
incidence rate and morbidity.

According to the pathological features of AD [4], it can be separated
into three phases, i.e., NC (Normal Control), MCI (Mild Cognitive Im-
pairment), and AD. NC status is typical without any symptoms. MCI is
a cognitive impairment state between average random cognitive ability
and dementia. It has a high probability to become AD eventually [5].
MCI is divided into sMCI (stable MCI) and pMCI (progress MCI).
Medically, two types of MCI are usually distinguished according to
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whether the patient has progressed 36 months after the first symptom
onset.

Clinically, doctors usually diagnose AD by comprehensively analyz-
ing the features of patients’ multiple modalities. These features usually
come from patients’ multimodal information, including neuroimage
data, gene sequence data, profile data, and clinical mental state scale
data. Magnetic resonance imaging (MRI), an imaging method that uti-
lizes magnetic resonance sensations to acquire electromagnetic signals
from a human body and reconstruct it, is widely used to diagnose
AD. Fig. 1 shows a sectional view of 3D MRI among three directions.
In addition, a patient’s personal attributes (such as age, gender, and
weight), gene sequence data, and clinical mental state scale data are
also commonly used to assist in AD diagnosis. Besides, the clinical
mental state scale is an essential basis for the diagnosis, evaluation,
and rehabilitation of progressive neurological impairment. The clinical
mental state scales have a variety of classes. Two commonly used scales
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Fig. 1. The three views of a 3D MRI image. These views are axial view, sagittal view,
and coronal view. Various views can depict different structural information of the brain.

are MMSE (Mini-mental State Examination) [6] and CDR (Clinical De-
mentia Rating) [7]. They are initially used to distinguish patients with
neurological disorders (like AD) from patients with mental disorders.

With data mining and deep learning technology evolution,
computer-aided diagnosis (CAD) is widely used in clinics. However, the
existing studies usually used patients’ MRI data to diagnose AD [8–11].
The ignorance of patients’ multimodal features makes the computer-
aided diagnostic model not wholly simulate the state of clinicians
in AD diagnosis. Mainly, few existing models apply patients’ profile
data. Liu et al. [12] proposed a neural network diagnostic architecture
which used patients’ neuroimaging data and profile data to diagnose
AD. Besides, Duc et al. [13] proposed a diagnostic model with joint
MMSE with functional MRI for AD diagnosis. However, the profile
data or MMSE data are directly placed in the fully connected layer as
neurons without considering the different levels of high-dimensional
features of the data. The neuroimaging features of patients extracted
by neural networks are usually more complex and high-dimensional.
The simple combination of high-dimensional neuroimaging features
and low-dimensional profile features may cause dimension mismatch
and cannot significantly improve accuracy. Although various models
for diagnosing AD have been proposed, there are still some challenges
for further enhancing the diagnostic accuracy. These challenges are
summarized as follows.
Challenge1: Clinically, doctors often make a comprehensive diagnosis
according to the patients’ multimodal features. Using only the patients’
neuroimaging features will make the diagnostic result inaccurate. How
to design a model to fuse the multimodal features of patients is a
challenge for computer-aided AD diagnosis.
Challenge2: Simply fusing the low-dimensional patients’ clinical and
biological information features and high dimensional neuroimaging
features will give rise to the results being dominated by one or some of
them. How to mine more noteworthy features from the low-dimensional
features for AD diagnosis, and how to fuse different dimension features
to give accurate diagnosis results is another challenge.

We propose a novel Alzheimer’s disease diagnostic model based
on multimodal feature transformation and fusion to tackle the afore-
mentioned challenges. As far as we know, this is the first time that
the low-dimensional features of patients’ clinical and biological in-
formation are transformed to fuse with MRI data for diagnosing AD.
2

The framework of our proposed multimodal feature fusion approach is
shown in Fig. 2. In order to mine more momentous features for AD diag-
nosis from the low-dimensional patients’ multimodal data, we propose
a multimodal feature transformation method. This method contains two
parts, feature dimension extension and feature filtration. Because the
low-dimensional information data has linear indivisibility problems and
lack of correlation between different features, we consider mapping low
dimensional features to a high dimensional space through the extension
of geometric algebra. Then, the proposed feature filtration algorithm
can filtrate the features that have a necessary consequence on AD
diagnosis. Other features are pruned. To make CADs better simulate the
clinicians’ process of diagnosing AD, we consider fusing these features
with patients’ neuroimaging features. To this end, a multimodal feature
fusion diagnostic model is proposed to accurately diagnose AD and
provide diagnostic advice to clinicians.

Our paper has the following contributions:

∙ A multimodal feature extension method based on geometric
algebra is proposed to obtain higher and deeper features
from multimodal information data. This method can extend
original multimodal information data into different levels of
high-dimensional features, which contains more information
about AD diagnosis. It is proved theoretically that our pro-
posed feature extension method is complete and correct for
the expression of the original multimodal information data.

∙ A feature filtration algorithm based on influence degree is
proposed to cut out those features extended by our proposed
feature extension method. With the help of mathematical
statistics, our proposed algorithm can filtrate features which
have no apparent guiding significance for AD diagnosis and
provide more valuable features for the diagnostic network.

∙ A neuroimaging feature extracting model based on a CNN
(Convolutional Neural Network) is designed to extract fea-
tures from MRI data. For the sake of better integrating neu-
roimaging features and multimodal information features, a
multimodal feature fusion model based on an ANN (Artificial
Neural Network) is designed to fuse multimodal features for
diagnosing AD.

∙ Experimental results on ADNI indicate that our diagnostic
model can achieve higher accuracy than other diagnostic
methods. Besides, our proposed method can converge faster,
which improves the efficiency of the diagnosis process.

2. Related work

Lately, deep learning has made remarkable achievements in com-
puter vision, explicitly using CNN to obtain features. It supplies various
ideas for diagnosing AD. Using CNN to acquire MR images’ features
may learn the features of different dimensions and reduce the complex-
ity of manual feature extraction. Better extraction feature information
from MRI can contribute to the accurate diagnosis of AD. Usually,
Fig. 2. The framework of our proposed multimodal feature fusion method. Our proposed architecture is divided into multimodal feature transformation, neuroimaging feature
extraction, and feature fusion. The synergy of various modules jointly realizes the diagnosis of AD.
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the existing feature extraction methods can be separated into four
types (voxel-based methods [14–16], image patch-based [17–19], ROI
(region of interest)-based [20–22], and whole image-based [23–25]).

These methods usually use 3D MR images [10,26,27] or 2D slice
structures [28] to extract features and improve diagnosis effectiveness
through different networks or image processing. Lian et al. [29] pre-
sented a weakly supervised attention network. By explicitly considering
the individual dissimilarities of different subjects, multiple clinical
scores and diagnostic categories can be predicted from MRI data,
and location-sensitive areas can be learned without prior anatomical
knowledge. Alinsaif et al. [8] presented a hybrid of 3D shearlet-based
descriptors with in-depth features for diagnosing AD. Although these
medical image diagnosis methods based on MRI have achieved good
results to a certain extent, the single use of patients’ MRI data for AD
diagnosis can easily cause the loss of valuable features, thus affecting
diagnosis results.

In order to comprehensively consider the neuroimaging diagnostic
features of patients, researchers used various modal data for AD diag-
nosis. These various data include PET (Positron Emission Computed
Tomography) [30,31] data, fMRI (functional MRI) [32,33] data, CSF
(cerebrospinal fluid) [34] data, DTI (diffusion tensor imaging) [35]
data, EEG (Electroencephalogram) [36] data, and etc. Zhou et al. [30]
trained the feature extractors in different modes, extracted the features
in different stages, and finally fused the extracted features to obtain the
diagnostic results. Abrol et al. [32] proposed a parallel feature extrac-
tion model for MRI and fMRI, and realized AD diagnosis by constructing
a support vector machine (SVM) classifier. Besides, Fiscon et al. [36]
used Fourier and Wavelet analysis to extract features from EEG and
used a supervised learning approach to diagnose AD. However, there is
a problem of the high missing rate of some multimodal neuroimaging
data, which makes the diagnosis accuracy often not good enough.

Although the existing computer-aided AD diagnosis methods have
achieved good results, they mostly use a single way of feature extrac-
tion on neuroimages, ignoring patients’ clinical and biological infor-
mation. Researchers consider adding different feature data to imaging
features for fusion diagnosis to better use patients’ clinical and biolog-
ical information data. Liu et al. [12] presented a neural network-based
diagnostic model. It used patients’ neuroimaging data and profile data
to diagnose AD. The profile data is directly put in the fully connected
layer as neurons. Again, Duc et al. [13] proposed a diagnostic model
with joint MMSE with functional MRI for AD diagnosis. However, [13]
only used MMSE data and carried out a pre-screening process, which
affected the final diagnosis results and made the model lose reusability.
Similarly, only using MMSE alone cannot significantly improve the
accuracy of AD diagnosis. Moreover, the existing methods of fusion
diagnosis based on multimodal information data usually extract shal-
low features and fuse them by simple splicing, so the diagnosis effect
is poor. We are also based on such a research status.

3. Materials and methods

3.1. Datasets

The major imaging initiatives for Alzheimer’s disease are ADNI [37]
and AddNeuroMed [38]. ADNI is committed to collecting neuroimages,
as well as AddNeuroMed is dedicated to dissecting biomarkers in AD
patients. The dataset used in this paper is acquired from ADNI. The
structural MRI dataset is used. The data information is listed in Table 1.
1461 subjects, including 767 men and 694 women, aged between 54
and 96 years old. The imaging protocol setting of these MR images is
listed in Table 2. All MR images used in this paper are sagittal scanning
images. Sagittal scanning can clearly show the shape and course of
the sulcus and gyrus. It has more advantages for clinicians to diagnose
brain-related diseases. For MR images, we unify the oversized images
into a consistent size by cutting and scaling, which makes the data
more convenient to train our network. The size of unified MRI data is
3

Table 1
Data sample information.

CLASS AD sMCI pMCI NC

Number 218 448 328 467
Sex (M/F) 111/107 276/172 164/164 216/251
Age (years) 77.93 ± 6.85 76.61 ± 6.93 76.73 ± 7.41 77.89 ± 6.11
Weight (kg) 69.81 ± 11.47 74.57 ± 14.74 72.52 ± 14.81 72.79 ± 13.72
MMSE 21.28 ± 4.71 26.71 ± 2.71 23.41 ± 4.79 29.11 ± 1.15
CDR 0.94 ± 0.51 0.45 ± 0.13 0.78 ± 0.47 0.06 ± 0.17

Table 2
The imaging protocol setting of our acquired datasets.

Protocol parameter Value

Acquisition plane Sagittal
Acquisition type 3D
Field strength 1.5 tesla
Slice thickness 1.2 mm
Echo time 3.5–3.7 ms
Inversion time 1000.0 ms
Repetition time 3000.0 ms
Weighting T1

192 × 192 × 160. In addition, APOE (Apolipoprotein E) is a Protein
Coding gene, which is the most significant risk gene of AD [39]. It
has three isoform alleles (𝜖2, 𝜖3, and 𝜖4). APOE 𝜖4 is regarded as the
primary genetic risk factor [40]. For APOE data, we convert it into an
eigenvector form to facilitate the model’s input.

3.2. Methodology

When clinicians diagnose Alzheimer’s disease, they not only make
a judgment according to patients’ neuroimaging status but also make
a comprehensive judgment according to patients’ personal attributes,
gene sequence data, and mental state examinations. The existing meth-
ods of computer-aided AD diagnosis usually construct different neural
networks to extract features from MRI for diagnosis. However, using
only a patient’s neuroimaging features will make AD diagnosis inac-
curate. Given this, we propose a multimodal feature fusion method
for diagnosing AD, which contains three parts, i.e., multimodal feature
transformation method, CNN neuroimaging feature extraction model,
and ANN feature fusion diagnostic model. Our proposed multimodal
feature transformation method transforms patients’ clinical and biolog-
ical information data, which aims to extract different levels of features
that can guide AD diagnosis. The CNN neuroimaging feature extraction
model extracted patients’ MRI data. These features extracted from the
two parts are jointly diagnosed AD by the ANN feature fusion module
to improve the diagnostic accuracy. Fig. 3 shows the architecture of our
proposed multimodal feature fusion diagnostic model.

Firstly, the design of a multimodal feature transformation module
(Section 3.2.1) considers the low dimension of patients’ multimodal
information data, and the information contained is limited. To mine
the potential deeper high-dimensional features, we consider using ge-
ometric algebraic feature transformation to extend the features of
multimodal information data (Section 3.2.1.1). The feature extension
method will generally introduce noise data into new feature groups.
Therefore, a feature filtration algorithm (Section 3.2.1.2) is proposed
to prune the features that are not significant for AD diagnosis. After
filtrating, we can get the feature groups that significantly impact the
diagnosis of AD. Secondly, researchers widely use CNN in image feature
extraction because of its excellent performance in computer vision. We
design a neuroimaging feature extraction model (Section 3.2.2) based
on CNN to extract features from patients’ MR images. Finally, a feature
fusion diagnosis model (Section 3.2.3) based on ANN is designed to
fuse the multimodal information features and neuroimaging features
to obtain the diagnosis results. ANN has excellent representation ability
and broad universality, so it can fuse various features and get diagnostic
results. More details are introduced below.
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Fig. 3. The whole architecture of our proposed multimodal feature fusion diagnostic model, including a multiple feature transformation module, a CNN feature extraction module
and an ANN feature fusion diagnosis module.
3.2.1. Multimodal feature transformation method
Clinically, when diagnosing AD, it is usually necessary to obtain

patients’ multimodal features in addition to neuroimaging features
for diagnosis. These multimodal features include patients’ personal
attributes (such as gender, age, and weight), gene sequence data,
and clinical mental state examinations data for patients’ mental and
neurological conditions. We propose a feature dimension extension
method and a feature filtration algorithm. Patients’ clinical information
data and biological information data are low-dimensional. The low-
dimensional data has the problems of linear indivisibility and lack of
correlation between different features. Therefore, we consider map-
ping low dimensional features to a high dimensional space through
the extension of geometric algebra. Our proposed feature dimension
extension method can extend the feature vectors from Euclidean space
to geometric algebraic space. After the dimension extension, the first-
order features of patients’ clinical and biological information data are
expanded to multi-level high-order features in the geometric algebraic
space. The extension uses the correlation details and high-level struc-
ture between different variables in patients’ clinical and biological
information data. At the same time, the transformed high-order features
have better interpretability. In the process of obtaining multi-level
features after feature dimension extension, a few features that are irrel-
evant to AD diagnosis (i.e., noise data) will inevitably be introduced.
Hence, we present a feature filtration algorithm based on statistical
hypothesis testing to prune noise features that have no significant
impact on AD diagnosis. These two parts are introduced below.

3.2.1.1. Feature dimension extension method. AD patients’ clinical and
biological information data are multimodal and have diverse dimen-
sions. We propose a universal method to extend the feature’s dimension
for different kinds of data. A feature vector 𝒙 =

(

𝑥1, 𝑥2,… , 𝑥𝑛
)

in
R𝑛 space is used to represent a patient’s feature. The set of vectors
𝑬 =

(

𝒆 , 𝒆 ,… , 𝒆
)

where 𝒆 = 0, 0,… , 1,… , 0 forms an orthonormal
4

𝟏 𝟐 𝒏 𝒊 ( )
basis of R𝑛 space, where 𝒆𝒊 ⋅ 𝒆𝒋 = 𝛿𝑖𝑗 and

𝛿𝑖𝑗 =

{

1 if 𝑖 = 𝑗
0 if 𝑖 ≠ 𝑗

(1)

For any two vectors 𝒂, 𝒃 ∈ ℜ𝑛, the geometric product is 𝒂𝒃 = 𝒂⋅𝒃+𝒂∧𝒃,
where 𝒂 ⋅ 𝒃 is the dot product of 𝒂 and 𝒃, and 𝒂∧ 𝒃 is the outer product
of 𝒂 and 𝒃. In order to better represent the extension process from
R𝑛 Euclidean space to ℜ2𝑛 geometric algebraic space, the following
definitions are first given.

Definition 1 (𝑚-Order Derived Vector). For the set of vectors 𝑬 =
(

𝒆𝟏, 𝒆𝟐,… , 𝒆𝒏
)

, 𝑚-order derived vector 𝒆 (𝐷) is defined as the geometric
product of m vectors in 𝑬, where the numbers of vectors are listed in
𝐷. That is

𝒆 (𝐷) =
𝑚
∏

𝑖=1
𝒆𝒊 (2)

where 𝑚 = |𝐷| is the cardinal number of set D. For example, 𝐷 = 2, 6, 3,
then we have 𝒆 (𝑫) = 𝒆𝟐𝒆𝟔𝒆𝟑.

Definition 2 (Metric Trace). For the set of vectors 𝑬 =
(

𝒆𝟏, 𝒆𝟐,… , 𝒆𝒏
)

and a vector 𝒙 =
(

𝑥1, 𝑥2,… , 𝑥𝑛
)

in R𝑛, the trace of the m-order derived
vector 𝒆 (𝐷) under vector 𝒙 is defined as:

𝑚𝑡𝑟(𝐷,𝒙) =
𝑚
∏

𝑖=1
𝑥𝑖 (3)

where 𝑚 = |𝐷| is the cardinal number of set D. For example, 𝐷 = 2, 6, 3,
then we have 𝑚𝑡𝑟(𝐷,𝒙) = 𝑥2𝑥6𝑥3 So, we can get that metric trace is a
scalar and 𝑚𝑡𝑟(𝐷,𝒙) ∈ ℜ.

Definition 3 (Power Ordered Set). Given a set 𝑆 = {1, 2,… , 𝑛} ⊆ N, the
potential of 𝑆 is 𝑛. We use 𝑃 (𝑆) to denote the power set of 𝑆, and the
potential of 𝑃 (𝑆) is 2𝑛. Power ordered set 𝑃𝑂(𝑆) is an ordered set that
satisfies the following four conditions:
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(1) 𝑃𝑂(𝑆) is a power set of 𝑆, where the potential is 2𝑛.
(2) All elements in 𝑃𝑂(𝑆) are subsets of 𝑆 and are arranged in the order
of increasing potential.
(3) Equipotential elements are arranged in the order of the elements in
the 𝑆 set.
(4) For every element in 𝑃𝑂(𝑆), the order of signals is arranged in
ascending order.

Then we define 𝑃𝑂 (𝑆)𝑚𝑖 to represent an element 𝑖 with potential 𝑚
in the power order set 𝑃𝑂 (𝑆). That is,

𝑃𝑂 (𝑆) =
{

𝑃𝑂 (𝑆)01 , 𝑃𝑂 (𝑆)12 ,… , 𝑃𝑂 (𝑆)1𝑛+1 ,… , 𝑃𝑂 (𝑆)𝑚𝑖 ,… , 𝑃𝑂 (𝑆)𝑛2𝑛
}

(4)

Definition 4 (Geometric Product Basis). For the set of vectors 𝑬 =
(

𝒆𝟏, 𝒆𝟐,… , 𝒆𝒏
)

and a set 𝑆 = {1, 2,… , 𝑛} ⊆ N, geometric product basis
𝑬𝑷 is defined as a group of geometric product basic vectors. That is

𝑬𝑷 = {𝒆 (𝐷) |𝐷 ∈ 𝑃𝑂 (𝑆)} (5)

The order of elements in 𝑬𝑷 is the same as that in 𝑃𝑂(𝑆), and there
has 𝐸𝑃𝑚

𝑖 = 𝒆
(

𝑃𝑂 (𝑆)𝑚𝑖
)

. Geometric product basis transforms the normal
vector basis in R𝑛 space into the vector basis in ℜ2𝑛 geometric algebraic
space, which is helpful to feature transformation.

To adjust the influence level of different features on the AD diagno-
sis, a harmonic factor ℎ𝑖 called influence degree is introduced into the
transformation process.

Definition 5 (Influence Degree). Given a basis vector 𝒆 (𝐷), influence
degree ℎ𝑖 is defined to indicate the probability that the hypothesis
‘‘𝒆 (𝐷) has a significant impact on AD diagnosis’’ is true.

The details about influence degree ℎ𝑖 will be introduced in Sec-
tion 3.2.1.2.

Established on the above definition, we present the feature ex-
tension method. Given a feature vector 𝒙 =

(

𝑥1, 𝑥2,… , 𝑥𝑛
)

and an
orthonormal basis 𝑬 =

(

𝒆𝟏, 𝒆𝟐,… , 𝒆𝒏
)

in R𝑛 space, 𝑆 = {1, 2,… , 𝑛} ⊆ N,
we transform the feature vector to ℜ2𝑛 space by using Eq. (6):

𝒇𝒕 (𝒙) =
2𝑛
∏

𝑖=1
ℎ𝑖 ⋅ 𝑚𝑡𝑟

(

𝑃𝑂 (𝑆)𝑚𝑖 ,𝒙
)

⋅ 𝐸𝑃𝑚
𝑖 (6)

𝐸𝑃𝑚
𝑖 is the element of 𝑬𝑷 . By using Eq. (6), a feature vector 𝒙

from R𝑛 Euclidean space can be extended to 𝒇𝒕 (𝒙) in ℜ2𝑛 geometric
algebraic space. The dimension of the original feature vector is 𝑛, and
the dimension of the extended feature vector is 2𝑛, which is equal to
the potential of 𝑃𝑂(𝑆).

Above, we give the process of transforming vector 𝒙 in R𝑛 space into
vector 𝒇𝒕 (𝒙) in ℜ2𝑛 space. Actually, there are usually multiple measure
variables in R𝑛 space. Assuming that there are 𝜆 measure variables in
R𝑛 space, we use matrix 𝑿 to represent multiple vectors in R𝑛:

𝑿 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑥 (1)1 𝑥 (2)1 ⋯ 𝑥 (𝜆)1
𝑥 (1)2 𝑥 (2)2 ⋯ 𝑥 (𝜆)2
⋮ ⋮ ⋱ ⋮

𝑥 (1)𝑛 𝑥 (2)𝑛 ⋯ 𝑥 (𝜆)𝑛

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝒙 (1)
𝒙 (2)
⋮

𝒙 (𝜆)

⎤

⎥

⎥

⎥

⎥

⎦

𝑇

(7)

where 𝒙 (⋅) is a single feature vector of R𝑛.
For the feature matrix 𝑿, we have the following equation to trans-

form it into R𝑛 space:

𝑭𝑻 (𝑿) = 𝑯◦𝑴𝑻𝑹 (𝑃𝑂 (𝑆) ,𝑿) ◦𝑬𝑷 (8)

where ◦ is the Hadamard product of the matrices. 𝑯 is the influence
degree matrix and 𝑴𝑻𝑹 (𝑃𝑂 (𝑆) ,𝑿) is the metric trace matrix. Spe-
cially, we have the following equation to calculate 𝑭𝑻 (𝑿) (Eq. (9) is
given in Box I). To theoretically prove the correctness and effectiveness
of our proposed feature extension approach, we take the case of single
5

vector as an example to give the prof process and some more theorems.
Lemma 1. All the vectors in 𝑬𝑷 are linearly independent.

Proof. Suppose 𝑽 is a vector in ℜ2𝑛 space, 𝑽 can be represented by
vectors in 𝑬𝑷 as the following equation:

𝑽 = 𝛼01+
𝐶1
𝑛

∑

𝑎=1
𝛼1𝑎 ⋅𝐸𝑃 1

𝑎 +
𝐶2
𝑛

∑

𝑏=1
𝛼2𝑏 ⋅𝐸𝑃 2

𝑏 +⋯+
𝐶𝑚
𝑛

∑

𝑖=1
𝛼𝑚𝑖 ⋅𝐸𝑃𝑚

𝑗+
∑𝑚−1

𝑗=1 𝐶𝑗
𝑛
+⋯+𝛼𝑛1 ⋅𝐸𝑃 𝑛

2𝑛

(10)

where 𝛼𝑣𝑢 represents the coefficient of the 𝑛th vector with potential 𝑣.
Especially, when 𝑣 = 0, the vector with potential 0 is a scalar.

Considering to prove that the vectors in 𝑬𝑷 are linearly indepen-
dent, it is necessary to prove that 𝑽 = 𝟎 if and only if all 𝛼𝑣𝑢 are equal
to 0. According to the principle of geometric algebra, only vectors with
the same potential can be calculated. So, if we have the equation 𝑽 = 𝟎,
it is equivalent to the following equation set:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝛼01 = 0
∑𝐶1

𝑛
𝑎=1 𝛼

1
𝑎 ⋅ 𝐸𝑃 1

𝑎 = 0
∑𝐶2

𝑛
𝑏=1 𝛼

2
𝑏 ⋅ 𝐸𝑃 2

𝑏 = 0
⋯ ⋯
∑𝐶𝑚

𝑛
𝑖=1 𝛼

𝑚
𝑖 ⋅ 𝐸𝑃𝑚

𝑗+
∑𝑚−1

𝑗=1 𝐶
𝑗
𝑛
= 0

⋯ ⋯
𝛼𝑛1 ⋅ 𝐸𝑃 𝑛

2𝑛 = 0

(11)

It is evident that 𝑎𝑙𝑝ℎ𝑎01 = 𝛼𝑛1 = 0.
Next, we analyze the second equation in the equation set, i.e.,

𝐶1
𝑛

∑

𝑎=1
𝛼1𝑎 ⋅ 𝐸𝑃 1

𝑎 = 𝛼11 ⋅ 𝐸𝑃 1
1 + 𝛼12 ⋅ 𝐸𝑃 1

2 +⋯ + 𝛼1𝑛 ⋅ 𝐸𝑃 1
𝑛 = 0 (12)

Multiply both sides of the equation by 𝐸𝑃 1
1 , then we have

𝛼11 ⋅
|

|

|

𝐸𝑃 1
1
|

|

|

2
+
(

𝛼12 ⋅ 𝐸𝑃 1
2 +⋯ + 𝛼1𝑛 ⋅ 𝐸𝑃 1

𝑛
)

⋅ 𝐸𝑃 1
1 = 0 (13)

Since |

|

|

𝐸𝑃 1
1
|

|

|

2
is a scalar, we can get 𝛼11 = 0 and

𝛼12 ⋅ 𝐸𝑃 1
2 +⋯ + 𝛼1𝑛 ⋅ 𝐸𝑃 1

𝑛 = 0 (14)

For Eq. (14), multiply both sides of the equation by 𝐸𝑃 1
2 , obtain that

𝛼12 = 0. By analogy, we can get

𝛼11 = 𝛼12 = ⋯ = 𝛼1𝑛 = 0 (15)

For ∑𝐶2
𝑛

𝑏=1𝛼
2
𝑏 ⋅𝐸𝑃 2

𝑏 = 𝛼21 ⋅𝒆𝟏𝒆𝟐+𝛼
2
2 ⋅𝒆𝟏𝒆𝟑+⋯+𝛼2

𝐶2
𝑛
⋅𝒆𝒏−𝟏𝒆𝒏 = 0, multiply both

sides of the equation by 𝒆𝟐𝒆𝟏, then we can get 𝛼21 = 0. Repeat similar
operations to get 𝛼21 = 𝛼22 = ⋯ = 𝛼2𝑛 = 0.

The other equations in Eq. (11) can also be calculated according to
the above principle, and all the 𝛼𝑣𝑢 = 0. Therefore, if and only if the
coefficients in the equation of vector 𝑽 represented by all vectors in
𝑬𝑷 are 0, 𝑽 = 𝟎.

In summary, all the vectors in 𝑬𝑷 are linearly independent. □

Through Lemma 1, we can get that the extended feature vector
group is linearly independent after the feature extension. We intend
to ensure that the extended eigenvector group can cover the geometric
algebraic space. That is, 𝑬𝑷 can represent any vector in the geometric
algebraic space. In addition, if we cannot guarantee the uniqueness
of the extension, the results will directly affect the accuracy of AD
diagnosis, and our method will become inconsistent. For the sake of
proving the correctness and uniqueness of our proposed approach, we
provide Theorem 1.

Theorem 1. After the feature extension, any vector in the ℜ2𝑛 space can

be represented by Eq. (6), and the expression is unique.
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𝑭𝑻 (𝑿) =

⎡

⎢

⎢

⎢

⎢

⎣

ℎ(1)1 ⋅ 𝑚𝑡𝑟
(

𝑃𝑂 (𝑆)01 ,𝒙 (1)
)

⋅ 𝐸𝑃 (1)01 ⋯ ℎ(𝜆)1 ⋅ 𝑚𝑡𝑟
(

𝑃𝑂 (𝑆)01 ,𝒙 (𝜆)
)

⋅ 𝐸𝑃 (𝜆)01
ℎ(1)2 ⋅ 𝑚𝑡𝑟

(

𝑃𝑂 (𝑆)12 ,𝒙 (1)
)

⋅ 𝐸𝑃 (1)12 ⋯ ℎ(𝜆)2 ⋅ 𝑚𝑡𝑟
(

𝑃𝑂 (𝑆)12 ,𝒙 (𝜆)
)

⋅ 𝐸𝑃 (𝜆)12
⋮ ⋱ ⋮

ℎ(1)2𝑛 ⋅ 𝑚𝑡𝑟
(

𝑃𝑂 (𝑆)𝑛2𝑛 ,𝒙 (1)
)

⋅ 𝐸𝑃 (1)𝑛2𝑛 ⋯ ℎ(𝜆)2𝑛 ⋅ 𝑚𝑡𝑟
(

𝑃𝑂 (𝑆)𝑛2𝑛 ,𝒙 (𝜆)
)

⋅ 𝐸𝑃 (𝜆)𝑛2𝑛

⎤

⎥

⎥

⎥

⎥

⎦

(9)
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roof. Given a feature vector 𝒙 =
(

𝑥1, 𝑥2,… , 𝑥𝑛
)

in R𝑛, suppose
hat the expression obtained after transforming the vector 𝒙 into ℜ2𝑛

space is not unique. So, there are at least two representation equations,
both of which can represent the vector obtained after the vector 𝑥 is
ransformed. The two equations are as follows.

𝟏 = 𝛼01 +
𝐶1
𝑛

∑

𝑎=1
𝛼1𝑎 ⋅ 𝐸𝑃 1

𝑎 +
𝐶2
𝑛

∑

𝑏=1
𝛼2𝑏 ⋅ 𝐸𝑃 2

𝑏

+⋯ +
𝐶𝑚
𝑛

∑

𝑖=1
𝛼𝑚𝑖 ⋅ 𝐸𝑃𝑚

𝑗+
∑𝑚−1

𝑗=1 𝐶𝑗
𝑛
+⋯ + 𝛼𝑛1 ⋅ 𝐸𝑃 𝑛

2𝑛 (16)

𝟐 = 𝛽01 +
𝐶1
𝑛

∑

𝑎=1
𝛽1𝑎 ⋅ 𝐸𝑃 1

𝑎 +
𝐶2
𝑛

∑

𝑏=1
𝛽2𝑏 ⋅ 𝐸𝑃 2

𝑏

+⋯ +
𝐶𝑚
𝑛

∑

𝑖=1
𝛽𝑚𝑖 ⋅ 𝐸𝑃𝑚

𝑗+
∑𝑚−1

𝑗=1 𝐶𝑗
𝑛
+⋯ + 𝛽𝑛1 ⋅ 𝐸𝑃 𝑛

2𝑛 (17)

he feature vector after the extension has the same meaning, so 𝑽𝟏 =
𝟐.

Let Eq. (16)–Eq. (17):

=
(

𝛼01 − 𝛽01
)

+
𝐶1
𝑛

∑

𝑎=1

(

𝛼1𝑎 − 𝛽1𝑎
)

⋅ 𝐸𝑃 1
𝑎 +

𝐶2
𝑛

∑

𝑏=1

(

𝛼2𝑏 − 𝛽2𝑏
)

⋅ 𝐸𝑃 2
𝑏 +⋯

+
𝐶𝑚
𝑛

∑

𝑖=1

(

𝛼𝑚𝑖 − 𝛽𝑚𝑖
)

⋅ 𝐸𝑃𝑚
𝑗+

∑𝑚−1
𝑗=1 𝐶𝑗

𝑛
+⋯ +

(

𝛼𝑛1 − 𝛽𝑛1
)

⋅ 𝐸𝑃 𝑛
2𝑛 (18)

According to Lemma 1, all the vectors in 𝑬𝑷 are linearly independent.
So, if and only if the coefficients in the equation of vector 𝑽 represented
by all vectors in 𝑬𝑷 are 0, 𝑽 = 𝟎. In Eq. (18), all the coefficients equal
o 0, i.e.
0
1 = 𝛽01 , 𝛼

1
𝑎 = 𝛽1𝑎 ,… , 𝛼𝑚𝑖 = 𝛽𝑚𝑖 ,… , 𝛼𝑛1 = 𝛽𝑛1 (19)

𝟐 and 𝑽𝟐 are the same vectors obtained by the feature extension
ethod. The hypothesis is not valid, so the original proposition is true.

So, it can be sure that any vector in the ℜ2𝑛 space can be represented
y Eq. (6), and the expression is unique. □

According to Lemma 1, the vectors in 𝑬𝑷 are linearly independent.
hat is, any vector in 𝑬𝑷 cannot be written in the linear combination
orm of other vectors. Following the proof of Theorem 1, it can be
urther concluded that 𝑬𝑷 can be regarded as a set of bases in the ℜ2𝑛

pace after transforming the original features in Euclidean space into
eometric algebraic space. Meanwhile, the representation of the base
𝑷 for any vector in the ℜ2𝑛 space is unique. In other words, when
e map the low dimensional feature 𝑥 in the original Euclidean space
𝑛 to the high dimensional space ℜ2𝑛 , the basis 𝑬𝑷 can completely

epresent the features of any dimension in the ℜ2𝑛 space. Because of
his completeness, the extension is feasible.

Through the above theorems, it can be proved that the proposed
eature extension method is reasonable. The first-order features of
atients’ biological and clinical information are expanded to multi-level
igh-order features by the feature extension. These features can more
omprehensively describe the patient from a variety of perspectives.

.2.1.2. Feature filtration algorithm. After feature dimension extension,
he first-order features of patients’ biological information data and clin-
6

cal information data are expanded to multi-level high-order features.
ome of these multi-level high-order features play an essential role in
D diagnosis. However, some redundant features will interfere with
D diagnosis. Therefore, a feature filtration algorithm is presented in

his paper to remove redundant features. To better mine the effect of
ifferent features on AD diagnosis from patients’ biological information
ata and clinical information data, an algorithm is designed to calculate
he influence degree ℎ𝑖 based on statistical test theory.

Since there are many eigenvectors represented by 𝒆
(

𝑃𝑂 (𝑆)𝑚𝑖
)

(the
ypes here refer to vector types and variable types), different test meth-
ds are filtrated for various eigenvectors. In mathematical statistics,
n the premise of determining the statistical model, the 𝑝-value is
sed to describe the compatibility between observed data and pre-
icted/expected results. In particular, the differences between data and
odel predictions are usually measured by test statistics. Therefore,

he 𝑝-value can be regarded as the possibility that the test statistics
iltrated by the research are at least as significant as the observed values
hen all the model assumptions, including the original assumptions,
re correct. Logically, the 𝑝-value tests all assumptions generated by the
ata. Based on the statistical meaning of 𝑝-value, ℎ𝑖 = 1 − 𝑝 is used to
easure the influence of currently observed 𝒆

(

𝑃𝑂 (𝑆)𝑚𝑖
)

on AD diagno-
sis. Besides, due to the diversity of variables to be studied, different test
methods (analytical models) should be filtrated for different variables.

Usually, the transformed features are mostly multi-vector. In re-
sponse to such situations, we first analyzed the data and obtained the
following assumptions: (1) the observed values of each group in the
sample are independent of each other, (2) the number of samples is
sufficient for statistical analysis, (3) there is no multicollinearity among
the features, (4) There are no obvious outliers, leverage points and
strong influence points in the sample. With the samples satisfying the
above assumptions, we can construct a binary logistic regression model
to evaluate the effect of the feature group on Alzheimer’s disease. It
should be noted that our null hypothesis is that the feature group has a
significant effect on Alzheimer’s disease. We evaluate the multi-vector’s
influence degree by analyzing the possibility that the hypothesis holds.

In addition, some of the transformed features are single-vector.
When testing a single feature, we adopt the mechanism of double
testing, that is, we set a two-step test. First, we analyze the influence of
this feature on AD diagnosis, and then we add a judgment verification
for the rationality of the test to enhance the reliability of the method.
Likewise, for dichotomous and categorical variables, we assume (1) the
observed values of each group in the sample are independent of each
other, (2) the number of samples is sufficient for statistical analysis. For
continuous variables, based on the above assumptions, we add (1) the
assumption of sample normality and (2) the equal variance of Levene
test. For different variable types, we choose different test methods. The
process of calculating ℎ𝑖 is sorted into Algorithm 1.

For different types of feature 𝒆
(

𝑃𝑂 (𝑆)𝑚𝑖
)

, different processing and
calculation methods are designed to obtain influence degrees. We
can know from the actual dataset that 𝒆

(

𝑃𝑂 (𝑆)𝑚𝑖
)

may be a single
vector or a multi-vector. There are three possible variables for a single
vector: dichotomous, categorical, and continuous variables. Based on
the relevant theories of the mathematical–statistical hypothesis test,
different test methods are designed to measure the impact of different
types of variables on AD diagnosis. The algorithm describes this process
in detail. Lines 4–6 are used to process dichotomous variable vectors.

Lines 8–10 are used to process categorical variable vectors. Lines 12–16
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Algorithm 1: calculation of the influence degree ℎ𝑖
Input: feature vector 𝒆

(

𝑃𝑂 (𝑆)𝑚𝑖
)

Output: influence degree ℎ𝑖
Obtain 𝒆

(

𝑃𝑂 (𝑆)𝑚𝑖
)

;
if 𝒆

(

𝑃𝑂 (𝑆)𝑚𝑖
)

is a single vector then
if 𝒆

(

𝑃𝑂 (𝑆)𝑚𝑖
)

is a dichotomous variable then
Chi-square (𝜒2) test is utilized to test the correlation
between the feature and AD;

ℎ𝑖 = 1 − 𝑝(where 𝑝 is the 𝑝-value of the test);
The odds ratio test is utilized to test the differences
between the dichotomous variables;

else
if 𝒆

(

𝑃𝑂 (𝑆)𝑚𝑖
)

is a categorical variable then
2 × 𝐶 𝜒2 test is utilized to test the correlation
between the feature and AD;

ℎ𝑖 = 1 − 𝑝;
Mantel–Haenszel test is utilized to test the
differences between different classes;

else
Remove significant outliers from data;
Both the Levene test and normality test are valid;
Independent-Samples t-test is utilized to test the
differences whether the feature effect AD;

ℎ𝑖 = 1 − 𝑝;
Kendall’s tau b correlation analysis is utilized to test
the correlation between the feature and AD;

end
end

else
The sample has no multilinearity, no obvious outliers,
leverage points, and strong influence points;

Binary logistic regression analysis is utilized to test the
correlation between the feature and AD;

ℎ𝑖 = 1 − 𝑝;
end
if ℎ𝑖 > 𝜖 (Note: 𝜖 is a threshold indicating the level of influence on
AD diagnosis) then

Continue;
else

ℎ𝑖 = 0;
end
Return ℎ𝑖.

are used to process the single-vectors that have continuous variables or
other types. Lines 18–20 are used to process multi-vectors.

After running Algorithm 1, the influence degrees of different fea-
tures on AD diagnosis can be obtained. At the same time, the features
with ℎ𝑖 = 0 will be cut off during the feature fusion process to eliminate
the noise introduced by feature redundancy.

3.2.2. CNN feature extraction network
In Section 3.2.1, feature transformation and feature filtration algo-

rithms are introduced. Besides, the neuroimaging features of patients
are also essential for diagnosing AD. In order to extract features from
patients’ MR images, a feature extraction network structure is designed
based on a convolutional neural network. As we all know, CNN is
widely used for feature extraction of image data because of its excellent
feature extraction ability. VGG [41] is a very typical CNN network
model for extracting image features. Considering that this study is
oriented to 3D MRI data, 3D CNN needs to be constructed, containing
many parameters to be learned. In order to retain the advantages of
VGG in image feature extraction and improve the training speed of the
model, we optimize the VGG network, including the number of chan-
nels, convolution layers, and other hyperparameters. It can adapt to the
7

feature extraction of 3D MR images, reducing the model’s complexity,
while improving its training speed. This process determines the number
of channels and convolution layers through experiments. Our proposed
CNN model consists of convolution layers with batch normalization
(conv(bn)), max-pooling layers, and fully connected (FC) layers. The
network structure and parameter settings are shown in Table 3. When
the input 3D MRI has different sizes, the network structure only needs
to adjust fewer parameters to adapt to this change.

In this CNN architecture, ReLU (Rectified Linear Unit) is selected as
the activation function because it can avoid the disappearance of gradi-
ent and prevent overfitting [42]. In the rear of each convolution layer,
a batch normalization (BN) layer is added to reduce data fluctuation
and improve training speed [43]. To extract the significantly different
features of patients, max-pooling is used for feature filtration [44]. In
FC layers, Dropout is used to avoid overfitting [45].

3.2.3. ANN feature fusion diagnostic model
In order to fuse the features extracted from neuroimage data with

patient profiles, genes, and other features, an ANN feature fusion model
is designed in this paper. As shown in Fig. 3, this fusion diagnostic
model contains three fully connected layers. Firstly, the neuroimaging
features extracted by CNN and the features extracted from patients’
clinical and biological information are spliced. Then, two fully con-
nected (FC) layers are established to obtain more profound fusion
features. Finally, the softmax layer is used to get the final diagnosis
results. Similarly, Dropout is also used in FC layers to avoid overfitting.
Meanwhile, Adam optimizer is used to train the whole network for
reaching the optimal solution [46].

3.3. Experimental settings

The experiments are implemented on a computer with an Intel Core
i9-9900k CPU and an NVIDIA GeForce RTX 2080Ti GPU. Adam [46] is
used as an optimizer on Pytorch to train our proposed model. The initial
learning rate and decay rate are set to 0.0001 and 0.9. Our proposed
model is verified on both AD diagnostic task (i.e., AD versus NC) and
MCI diagnostic task (i.e., sMCI versus pMCI). We divided the data set
into training set, verification set and test set according to the ratio
of 7:1:2. More specifically, four metrics, accuracy (ACC), sensitivity
(SEN), specificity (SPE), and area under the curve (AUC, obtained by
summing the area under the ROC curve) are the most commonly used
in bioinformatics literature. We use these to evaluate the proposed
model’s diagnostic performance.

4. Results and discussions

This section obtains experimental results from our proposed fea-
ture fusion diagnostic model in dataset ADNI (Alzheimer’s Disease
Neuroimaging Initiative). Experimental results of our proposed feature
transformation method are shown in Section 4.1. Also, we compared
our proposed fusion diagnostic model with several SOTA (state-of-the-
art) AD diagnostic models (see Section 4.2).

4.1. Performance of feature transformation method

To assess the performance of our presented feature transforma-
tion approach WH-T (with-transformation method), we compare our
approach with the other two cases, i.e., WH-I and NO-I. WH-I (with-
information) means that all multimodal information data given in
this paper is available without feature transformation. They are only
input into the diagnosis network as input neurons and fused with
neuroimaging features for diagnosing AD. NO-I (no-information) means
that only neuroimaging features are used for diagnosing AD. All three
methods (NO-I, WH-I, and WH-T) use the same neuroimaging feature
extraction architecture (described in Section 3.2) to ensure rationality.
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Fig. 4. Accuracy of AD vs. NC diagnostic task according to different epochs. The left one is the train accuracy and the right one is the test accuracy. The green line is our
proposed method.
Table 3
The architecture of the CNN feature extraction network.

Layer Stage Input Size Output

1 conv(bn) 192 × 192 × 160 × 1 3 × 3 × 3 × 8 192 × 192 × 160 × 8
2 max-pooling 192 × 192 × 160 × 8 2 × 2 × 2 96 × 96 × 80 × 8
3 conv(bn) 96 × 96 × 80 × 8 3 × 3 × 3 × 16 96 × 96 × 80 × 16
4 maxpooling 96 × 96 × 80 × 16 2 × 2 × 2 48 × 48 × 40 × 16
5 conv(bn) 48 × 48 × 40 × 16 3 × 3 × 3 × 32 48 × 48 × 40 × 32
6 conv(bn) 48 × 48 × 40 × 32 3 × 3 × 3 × 32 48 × 48 × 40 × 32
7 max-pooling 48 × 48 × 40 × 32 2 × 2 × 2 24 × 24 × 20 × 32
8 conv(bn) 24 × 24 × 20 × 32 3 × 3 × 3 × 64 24 × 24 × 20 × 64
9 conv(bn) 24 × 24 × 20 × 64 3 × 3 × 3 × 64 24 × 24 × 20 × 64
10 max-pooling 24 × 24 × 20 × 64 2 × 2 × 2 12 × 12 × 10 × 64
11 conv(bn) 12 × 12 × 10 × 64 3 × 3 × 3 × 64 12 × 12 × 10 × 64
12 conv(bn) 12 × 12 × 10 × 64 3 × 3 × 3 × 64 12 × 12 × 10 × 64
13 max-pooling 12 × 12 × 10 × 64 2 × 2 × 2 6 × 6 × 5 × 64
14 FC 6 × 6 × 5 × 64 2048 2048
15 FC 2048 256 256
Table 4
Results of two diagnosis tasks in different methods.

Method AD vs. NC sMCI vs. pMCI

ACC SPE SEN AUC ACC SPE SEN AUC

NO-I 0.938 0.842 0.974 0.972 0.795 0.755 0.726 0.819
WH-I 0.948 0.772 0.993 0.971 0.845 0.902 0.715 0.904
WH-T 0.962 0.930 0.974 0.986 0.874 0.881 0.905 0.958

Table 4 shows the performance of different methods. Hence one can
see from the table that the diagnostic model with feature transforma-
tion can obtain the best accuracy. The feature transformation method
can transform the low-dimensional features into high-dimensional fea-
tures at different levels. The extension of features provides more infor-
mation for AD diagnosis and reaches more accurately. Moreover, other
proposed WH-T model has almost reached the optimal level during
different evaluation indicators.

Comparing AD vs. NC task and sMCI vs. pMCI task on the dataset
ADNI, it follows that the diagnosis results on AD vs. NC task are gen-
erally better than those on sMCI vs. pMCI task. The same results have
also appeared in other related studies [8,47]. A reasonable explanation
is given for these results. First, in clinical, the neuroimaging features of
Alzheimer’s disease are mainly manifested in two aspects: the atrophy
of the hippocampus and medial temporal lobe; the slow metabolism of
deoxyglucose in the inferior parietal lobule, praecuneus, and posterior
cingulate cortex. The two main neuroimaging features are easier to
distinguish for AD vs. NC but more difficult for sMCI vs. pMCI. In
other words, it is more difficult for clinicians to distinguish sMCI vs.
pMCI than AD vs. NC accurately. This diagnostic task often requires
experienced doctors.

Similarly, it will be more difficult for the neural network to extract
features for computer-aided AD diagnosis when diagnosing sMCI vs.
pMCI. Therefore, the diagnostic performance of MCI is not more ap-
parent than that of AD. Second, doctors often diagnose the two states
of MCI through patients’ clinical features (Note: The clinical definition
8

of sMCI is that a patient’s situation has not progressed or stabilized
within three years after the patient was first diagnosed with MCI. The
clinical definition of pMCI is that a patient’s situation has changed sig-
nificantly in recent three years.), rather than simply based on patients’
neuroimaging features. The diagnosis often requires doctors to judge
in combination with the previous medical history, but computer-aided
diagnosis cannot achieve this. Even some patients with sMCI or pMCI
have no significant differences in neuroimaging features. Therefore, it
also brings some difficulties to computer-aided MCI diagnosis.

Figs. 4–5 show the accuracies values according to different epochs in
the two tasks. We can acquire that all models are trained to the optimal
state from these figures. It is worth noting that WH-T can achieve
the optimal state in fewer epochs. That is, the model has a faster
convergence speed. Meanwhile, WH-I can also partly accelerate the
convergence speed of the model. Comparative experiments demonstrate
that multimodal features can enhance the diagnostic accuracy of AD. At
the same time, due to the introduction of more diagnostic information,
the training speed of the model is improved, and the optimal state can
be achieved in a shorter training time. In addition, the comparative
experiments of the WH-I and WH-T indicate that the scientific and
reasonable transformation of multimodal features can improve the
diagnostic result and further accelerate the convergence.

To further demonstrate the performance of our proposed method,
we present the ROC curves of two diagnostic tasks. As shown in Fig. 6,
ROC curves can clearly show the diagnostic ability of the models for
AD. It can be seen from these figures that the ROC curves of the WH-T
group (the green curves in these figures) are closer to the upper left
corner. Also, the ROC curves of WH-I and NO-I have smaller areas
under the curves. Therefore, it can be concluded that our method is
superior to other methods.

The above experimental results demonstrate that the proposed mul-
timodal feature transformation method is effective. Based on the neu-
roimaging feature extraction network, multimodal features are added
to obtain better diagnostic results. At the same time, the multimodal
features obtained by using the feature transformation method are better
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Fig. 5. Accuracy of sMCI vs. pMCI diagnostic task according to different epochs. The left one is the train accuracy and the right one is the test accuracy. The green line is our
proposed method.
Fig. 6. ROC curves of two diagnostic tasks. The orange lines represent our proposed method. The dark blue dotted line is the boundary line of AUC = 0.5.
Fig. 7. Feature visualization of AD vs. NC task. Blue dots indicate samples with positive labels, and orange dots indicate samples with negative labels.
than those obtained by directly inputting multimodal information data
without transformation. The reason is that the multimodal feature
transformation method transforms the original low-dimensional fea-
tures into different high-dimensional features. The transformation of
features can better mine the potential information that impacts AD
diagnosis. In addition, the feature filtrating algorithm reduces the input
of noise features (i.e., those features that have no significant impact on
AD diagnosis) to a certain extent and further improves the diagnostic
effect.

Meanwhile, the overall diagnostic model has a faster convergence
speed due to multimodal features in the diagnosis process. In addition,
the introduction of multimodal features can make the diagnostic model
have more references in diagnosing diseases and have a more com-
prehensive and detailed understanding of the situation of patients. In
model training, many comprehensive and detailed patient features are
bound to make it easier for the model to diagnose diseases than a single
9

neuroimaging information. That is, the convergence speed of the model
is faster than others.

In order to more intuitively show the effect of multimodal feature
fusion on Alzheimer’s diagnosis, a feature visualization method is used
to show the feature output results of the fully connected layer in NO-I,
WH-I, and WH-T. Figs. 7–8 respectively show the feature visualization
results of three situations in different diagnostic tasks.

The output of a sample can be expressed by an ordered pair (FC-
X, FC-Y) in a two-dimensional space, where FC represents the feature
vector of FC layer of the network. Since FC layer finally uses the
Softmax function for prediction, all samples are on the same straight
line. In these figures, blue dots indicate samples with positive labels,
and orange dots indicate samples with negative labels. When making a
diagnosis, if Y > X, the test sample is judged to be a positive sample;
otherwise, it is a negative sample. The straight-line Y = X can be
regarded as the judgment boundary between positive and negative
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Fig. 8. Feature visualization of sMCI vs. pMCI task. Blue dots indicate samples with positive labels, and orange dots indicate samples with negative labels.
Fig. 9. The comparison results between the NT method and our proposed WH-T method in the two diagnostic tasks. Four evaluation indexes are used to measure diagnostic
performance.
Fig. 10. ROC curves of NT and WH-T methods in the two diagnostic methods. The orange lines represent our proposed model.
samples. From these figures, the WH-T classification accuracy is higher
than others. That is, as many positive samples as possible are judged
as positive ones, and negative samples are judged as unfavorable ones.
Therefore, the multimodal feature fusion diagnostic model proposed in
this paper improves the ability of the AD diagnostic model.

In this paper, we propose a feature transformation method, which
extends the features of patients’ clinical information data and biological
information data, and mines the deeper features significant for AD
diagnosis through the proposed feature filtration algorithm. Through
the ablation experiments of the feature transformation module above,
we can see that our proposed WH-T method has obvious advantages.
In addition, another consideration of feature transformation is to re-
duce the dimension of the patients’ neuroimaging features, make the
10
dimension consistent with the patients’ clinical information data and
biological information data, and carry out fusion diagnosis. Therefore,
we reduce the dimension of the neuroimaging features extracted by
the CNN feature extraction model proposed in this paper through the
ANN layers, and fuse them with the unprocessed patients’ clinical in-
formation data and biological information data to obtain the diagnosis
result (named NT). Fig. 9 shows the performance of the two methods
under four evaluation indexes. Comparing the NT method with the WH-
T method, the performance of the WH-T method is better than that
of the NT method in two diagnostic tasks. In addition, we plotted the
ROC curves of the two methods, as shown in Fig. 10. The performance
of the WH-T method is apparently better than that of the NT method.
Objectively, although the NT method reduces the computing time to a
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Fig. 11. The boxplots of the cross-validation results in the two diagnostic tasks. The line in the middle of each box represents the median. The cross indicates the mean of the
current evaluation index. Independent points outside the box are considered outliers.
Table 5
Diagnostic performance of our proposed method compared with other techniques applied to diagnose AD.

Reference Subject AD vs. NC sMCI vs. pMCI

ACC SPE SEN AUC ACC SPE SEN AUC

Jan et al. [48] 231 NC + 63 sMCI + 168 pMCI +198 AD 0.87 0.81 0.91 – 0.71 0.68 0.74 –
Suk et al. [49] 101 NC + 128 sMCI +76 pMCI + 93 AD 0.92 0.92 0.95 0.97 0.72 0.37 0.91 0.73
Liu et al. [50] 204 NC + 180 AD 0.79 0.83 0.87 0.78 – – – –
Liu et al. [51] 128 NC + 117 sMCI + 117 pMCI + 97 AD 0.93 0.95 0.90 0.96 0.79 0.88 0.76 0.83
Korolev et al. [52] 61 NC + 77 sMCI + 43 pMCI + 50 AD 0.80 – – 0.87 0.52 – – 0.52
Karasawa et al. [11] 574 NC + 346 AD 0.94 – – – – – – –
Shi et al. [53] 52 NC + 56 sMCI + 43 pMCI + 51 AD 0.95 0.94 0.96 0.96 0.75 0.63 0.85 0.72
Khv et al. [54] 58 NC + 48 AD 0.85 0.88 0.90 – – – – –
Lin et al. [55] 229 NC + 193 sMCI + 169 pMCI + 188 AD 0.80 0.84 0.75 0.86 0.80 0.86 0.69 0.84
Xu et al. [56] 165 NC + 95 sMCI + 126 pMCI + 142 AD 0.90 0.92 0.89 0.95 0.64 0.79 0.45 0.68
Cui et al. [22] 223NC + 231 sMCI + 165 pMCI + 192 AD 0.91 0.95 0.87 0.93 0.72 0.76 0.65 0.73
Zhu et al. [57] 419 NC + 345 AD 0.92 0.87 0.95 0.96 – – – –
Lian et al. [18] 429 NC + 465 sMCI + 205 pMCI + 358 AD 0.90 0.82 0.97 0.95 0.80 0.53 0.85 0.78
Duc et al. [13] 198 NC + 133 AD 0.85 0.67 – – – – – –
Poloni et al. [58] 302 NC + 209 AD 0.83 – – 0.90 – – – –
Alinsaif et al. [8] 50 NC + 50 sMCI + 50 pMCI + 50 AD 0.90 0.85 0.95 – 0.70 0.60 0.80 –
Zhang et al. [59] 40 NC + 38 AD 0.95 – – – – – – –

Proposed 100 NC + 117 sMCI + 53 pMCI + 78 AD 0.96** 0.93** 0.97* 0.99* 0.87** 0.88*** 0.91** 0.96*

Note:
*Indicates extremely significant statistical difference (𝑃 < 0.01).
**Indicates significant statistical difference (𝑃 < 0.05).
***Indicates no significant statistical difference (𝑃 > 0.05).
certain extent, it has a poor ability to mine the information contained
in patients’ clinical information data and biological information data,
and ignores some potential features that have a significant impact on
the diagnosis of AD. Therefore, the diagnostic ability of the NT method
is lower than that of the WH-T method.

4.2. Performance of fusion diagnostic model

In this subsection, the overall performance of the fusion diag-
nostic model is given. Because the dataset of medical images is not
large enough, it is easy to produce overfitting phenomena and signif-
icant generalization errors in model training. Hence, a 10-fold cross-
validation method is used during training our proposed fusion diag-
nostic model to ensure that the trained model has better stability and
fidelity. Fig. 11 shows the experimental results in different diagnostic
tasks. The figure shows that our proposed diagnostic model always
performs well in two diagnostic tasks when we transform different data
into training and testing sets. Meanwhile, the experimental results also
demonstrate that the influence of input data on the model is limited.
That is, the method we proposed has specific stability and robustness.

The results of our proposed model are compared with the recent
techniques applied to diagnose AD. All these methods are tested on
11
MRI data of the ADNI dataset. The experimental results are shown
in Table 5. These methods include traditional feature engineering-
based methods [48,51,56,58,59] and deep learning-based methods.
According to the different models used, the methods based on deep
learning are divided into deep Boltzmann machine-based methods [49],
stacked autoencoder-based methods [50], recurrent neural network-
based methods [22], deep polynomial network-based methods [53],
and CNN-based methods [8,11,18,52,54,55,57] widely used in com-
puter vision. It is worth noting that although the datasets used in
all the literatures are from ADNI open-access datasets, the number of
subjects used in different literatures are various. However, we can still
obtain some observations with a rough comparison of our proposed
method (the last row in Table 5) with these SOTA methods. First of
all, although we use a different number of subjects dataset from the
other literatures in the table for performance evaluation, our method
achieves the best performance on both two diagnostic tasks regardless
of whether the baseline literatures select more (e.g. [18]) or less
(e.g. [8]) data. This comparison is obviously relatively fair. Second,
we use a more challenging evaluation method, i.e., we set up an in-
dependent training set and test set, which makes our proposed method
more credible. Third, our proposed method shows the best performance
compared with several CNN-based diagnostic methods, which indicates
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Fig. 12. The training and validation loss function curves of two diagnostic tasks. The blue curve represents the change curve of the loss function on the training set. The orange
curve represents the change curve of the loss function on the validation set.
Fig. 13. The comparison results in AD vs. MCI task and AD vs. NC task. Four evaluation indexes (includes ACC, SPE, SEN, AUC) are used to measure diagnostic performance. AD
vs. MCI task achieves comparable performance with AD vs. NC task in almost all evaluation indexes.
that the performance of AD diagnosis can be improved by introducing
multimodal transformation module. Furthermore, our method achieves
better results than the method using untransformed patient clinical
information data [13]. It means that the feature transformation method
proposed in this paper can mine the latent features of patients at
a deeper level and provide more comprehensive patient information
for the diagnostic model through multimodal information data feature
transformation and fusion. It makes the features more influential for
AD diagnosis through feature extension and filtration. Therefore, our
method can achieve excellent results.

To demonstrate the convergence of our proposed method, we docu-
ment the training loss and validation loss values at each epoch in both
AD vs. NC task and sMCI vs. pMCI task, as shown in Fig. 12. The loss
function values gradually decrease in the first 40 epochs and converge
within 50 epochs. It is worth noting that the training loss and validation
loss decrease synchronously with the increase of epoch, and finally tend
to be stable. This shows that our method can achieve the optimal state
and avoid the occurrence of the overfitting phenomenon.

AD vs. MCI task is more challenging to diagnose for AD vs. NC tasks.
MCI patients usually have similar neuroimaging and clinical features as
AD patients so that MCI patients are hard to be distinguished from AD
patients in the diagnosis. Therefore, we mix sMCI class and pMCI class
to form MCI class, and use our proposed method to classify AD and MCI.
The performance is shown in Fig. 13. As can be seen from the figure,
AD vs. MCI task achieves comparable performance with AD vs. NC task
in almost all evaluation indexes. Although AD vs. MCI task is more
difficult to diagnose than AD vs. NC task, our proposed method can
still perform well. This shows that our proposed method has excellent
performance and broad applicability.

5. Conclusion

In this study, a novel AD diagnostic model with multimodal feature
transformation and fusion is developed. We propose a multimodal
feature transformation method to mine more information from patients’
12
profiles, gene sequences, and mental state examination data. A geomet-
ric algebra-based multimodal feature extension method is proposed to
obtain higher and deeper features. An influence degree-based feature
filtration algorithm is proposed to cut out those features, which have
no apparent guiding significance for AD diagnosis. Then, a CNN-based
neuroimaging feature extracting model is designed to extract features
from MRI data. Also, an ANN-based fusion model is designed to fuse
the transformed features with the neuroimaging features extracted by
CNN. The proposed model has been applied for automated diagnosis of
AD in two classification tasks and obtained excellent performance. The
proposed model improves the diagnostic accuracy and accelerates the
convergence of the diagnostic model. It has been observed that our pro-
posed model can achieve 96.2% accuracy in the AD vs. NC diagnostic
task and 87.4% accuracy in the sMCI vs. pMCI diagnostic task when the
model has been trained to the optimal situation. Our proposed feature
fusion diagnostic model can obtain the optimal diagnostic performance
on both diagnostic tasks compared with SOTA methods.

Considering that multimodal features can better guide the model
for AD diagnosis, in the future, we will collect more patients’ feature
information clinically and fuse more multimodal information data for
diagnosis to further improve the effectiveness of the model. In addition,
if the patients’ clinical or biological information data are incomplete,
it will be challenging to use the method proposed in this paper for
diagnosis. Therefore, the completion of missing data will be regarded
as an extension of this work.
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